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To solve Poisson’s equation in a three-dimensional field-effect 
transistor structure we use the “finite strip” method. This allows us 
to treat the problem as a set of two-dimensional planes which can be 
analysed in parallel. We describe a method to treat each plane using a 
direct algorithm and report the comparative timing of two-dimensional 
and three-dimensional models. 0 1332 Academic Press. Inc. 

1. INTRODUCTION 

In many branches of science and engineering which 
model particles interacting with a field, it may be necessary 
to numerically solve elliptical partial differential equations 
(PDEs) such as Poisson’s equation in a three-dimensional 
(3D) structure [ 11. A common example is found in 
semiconductor device simulations where the electrostatic 
potential must be repeatedly calculated for varied charge 
distributions in a given physical structure until a steady 
state solution is found. 

In programs such as WATMOS [2] or CADDETH 
[ 31 which model metal-oxide-semiconductor transistors, 
iterative matrix methods such as successive over relaxation 
(SOR) or incomplete cholesky+onjugate gradient (ICCG) 
are used [4, 51. For simple planar transistor structures 
(Fig. 1) such as metal-semicondoctor field-effect transistors 
(MESFETs) we can take advantage of the boundary 
conditions and use direct (i.e., non-iterative) methods. 

In this paper we describe a technique analogous to 
the “finite strip” method [6], commonly used in civil 
engineering, which transforms the 3D structure into a set of 
two-dimensional (2D) planes. We then describe how these 
planes can be treated in parallel and the quasi-2D solutions 
reconstituted into a 3D solution. We use a model problem 
of a three-electrode FET with simple boundary conditions. 
The techniques described, however, are more generally 
applicable. 

2. 3D ALGORITHM 

Poisson’s equation is defined in 3D as 

(1) 

where, in the case of semiconductor devices, 4 is the 
electrostatic potential and p is the charge density (defined in 
suitable units). 

For our model problem the region’s shape is uniform in 
the z-dimension and so the electrostatic potential can be 
described by 

4= i frn(X~Y)17,(Z)> (2) 
WI=1 

where n,(z) are a set of orthogonal functions. In our case 
we will take advantage of the uniform discretization and 
simple boundary conditions and use a real fast Fourier 
transform. 

2.1. Boundary Conditions for FET Structures: Fig. 1 

Our aim is to solve Poisson’s equation for the finite block 
of semiconductors shown in Fig. 1. At the three electrodes 
the electrostatic potential is fixed. In the interelectrode 
regions, the change in relative permittivity at the semi- 
conductor air interface causes a first-order approximation, 
the electric field (i.e., the gradient of the electrostatic 
potential) normal to the surface to be zero. A similar argu- 
ment implies that the electric fields at z = 0 and z = c are 
also zero. The planes x = 0, x = a, and y = 0 are assumed 
to be far enough from the changing electrode potentials for 
the electric field to have fallen to zero. Dimensions a and b 
can always be adjusted until this is the case. Thus in all 
planes other than the top plane we use Neuman boundary 
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FIG. 1. 3D FET Structure. 
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(4). (The z-dimension is chosen because 
of the region is uniform in this dimension.) 

8i.,,x=g z E(k) di,j,k COS (z), 
i k=O 

(k=O, N;) 

otherwise, 

the 

(5a) 

where 

(5b) 

conditions. In the top plane a mix of Neuman and Dirichlet 
boundary conditions are used. The boundary equations and N, is the number of mesh spacings in the z-dimension. 

may be written: Pi, j,k is transformed to Pi,,,K in the same way. 

ad z=o at x=Oandx=a, (3a) 2.3. Poisson’s Equation in a 20 Transform Plane 

By substituting (b) into (4) we obtain an equation which 

ad 0 
is invariant in the third dimension. Thus each equation is -= 

aZ at z=Oandz=c, (3b) effectively 2D for a given “plane number” K: 

a4 
FY=O at y=O 6,+ I, j,n- - 24i, j,h. + ii& I,/,K 

42, 

+ term inj 

d= vo at y = b and x E (0, x,) W) 
sin*( K7c/2NZ) 

-4i.i.K Az = Pi.,,K. (6) 

4= VI at y=bandxE(x2,xg) W 

d=V* at y=bandxE(xq,a) (3f) (For further details see, for example, Ref. [4].) 
In vector notation this can be written as 

%=o 
ay 

at y=bandxE(x1,x2) 0) 

or x E (x3, x4). ml where q, is the modified charge distribution; A is a 

2.2. Decomposing the 30 Structure into a Set of 20 Planes 
tridiagonal matrix given by 

In order to solve Poisson’s equation numerically we first 
discretise it. To make the resulting calculation easier we use 
a mesh which ranges from &2<, where 5 is an integer in 
the x-dimension, with analogous ranges in the y- and 
z-dimensions. The edges of the grid are chosen to be 
coincidental with the edges of the structure by judicious 
choice of the mesh spacing. 

Using i, j, and k as the counting integers and A,, A,., and 
AZ as the mesh spacing in the x, y, and z dimensions, respec- 
tively, Poisson’s equation becomes 

~i+I,j,k-2~i,j,k+~r-I,j,k 

4: 

+ similar terms in j and k = pi, j, k. (4) 

A= triCKi, -2(1 +cc-‘+cc-‘p),cc~‘]; V’b) 

and the components c( and p are given by 

+L)‘, pq-iy~N:~)2. (7c) 

2.4. Boundary Conditions of 20 Plane 

We can look at the effect of the Fourier transform (FT) 
on the equations governing the boundary conditions. At the 
boundaries where the electric field is zero, 

@a) 

We use a real fast Fourier transform in the z-dimension to where n is normal to the plane. By using cosines in the FT 
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we automatically satisfy this condition at z = 0 and z = c. 
On substituting (5) into (ga) we obtain 

“i,=, 
Jn 

for each K. @b) 

By substitution we can also find the equation at the 
contacts: 

CjK=$ z vCOS(3=2c’ (K=O) 
- k=O 

=o (K # 0). @cl 

As the transformed equation and the boundary conditions 
are uncoupled for a given value of K we can consider the 
problem as a set of 2D planes which can be solved in 
parallel. 

3. SOLUTION TO THE QUASI-SD 
POISSON EQUATION 

In order to solve these problems as quickly as possible we 
have modified the well-known FACR algorithm. The 
essence of this program is a combination of two direct 
methods: Fourier analysis (in our case the FFT) and cyclic 
reduction. By including an initial odd/even reduction 
we optimise the algorithm for maximum speed; and by 
including the capacity matrix technique we can deal with 
the mixed boundary conditions found when incorporating 
electrodes. 

In the following section we give a brief account of the 
FACR algorithm and summarise the changes required to 
implement the quasi-2D Poisson equation. Essentially these 
are changing the constants (in the 2D algorithm) which 
depend on rc. (See Fig. 2 for a comparison between 2D and 
3D. For further details of the FACR algorithm see, for 
example, Ref. [ 1, 4, 71.) 

3.1. Initial Odd/Even Reduction 

We start by reducing the full set of equations to the even 
lines only by combining three adjacent equations: 

so that 

Pd) 

and 

s,=~-,+qj+1-&7j. (94 

(Here f is the unit matrix.) 
In the program, the subroutine which calculates (9e) will 

be altered using this procedure, since A(K) is different for 
each plane. 

3.2. Fourier Analysis 

After Fourier analysis (9d) is given by 

d;-2+M; +#+2=& (10) 

where A,(K) is the eigenvalue of the matrix (2f- A2). 
Note that the eigenvalues of a simple tridiagonal matrix 

tri[l,O,l]are2cos~,,where~,=rrl/N,~,O~l~N,.This 
is because 

O<i<N,. 

Therefore the eigenvalues of matrix A( K) are 

and the eigenvalues of matrix (2f- A(K)') are 

/i,(K)= 2 -/ll(K)2. 

(1 la) 

(lib) 

(llc) 

The sets of eigenvalues /Z,(k) are calculated in an initial 
setup subroutine. 

3.3. Recursive Cyclic Reduction 

From (10) we can reduce the set of equations to the t th 
level, such that 

where 

dj- 2’ + IL(‘)& + 4, + 2’ = Sj”, 

j = 2’ step 2’ until NY - 2’, (124 

and 

(12b) 

qjr+ ‘) = qj1’ 2, + q;lf 2, - p+p. (12c) 
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This finally results in a pair of simultaneous equations 
which give the top and bottom lines: 

Hence we can find do and d,,,, . 
The intermediate values can be deduced from a back- 

wards recursion: 

~ji((q::r'-~,/21+~,+Z1)/n"', 

j = 2’ step 2’ until N,, - 2’. 
(14) 

3.4. Fourier Synthesis 

Solutions of potentials on the even lines can be found by 
forming the Fourier transform of the harmonic amplitudes. 

3.5. A Solution on the Odd Lines 

By combining the original equation with the solution 
already found on the even lines, a solution can be deduced 
for the odd lines 

The routine which calculates the left-hand side of (15) has to 
be altered to take account of the extra term j?. 

3.6. Including Electrodes 

In each quasi-2D plane (other than K = 0 plane) the value 
on the electrodes is 0. These fixed potentials can be 
calculated by inducing a charge on the electrodes using 
Hackney’s “capacity matrix” technique, where the matrices 
for each plane are calculated in a setup subroutine. (See Ref. 
[ 1 ] for further details.) 

The capacity matrices and eigenvalues are calculated in a 
routine prior to running the model. Hence the modified 
routine should run in approximately the same time as the 
original. 

4. TEST DATA AND EMPIRICAL TIMING OF 
2D AND 3D ROUTINES 

(All calculations were performed on an INMOS T800 
transputer.) 

CONCLUSIONS 

A mesh size (&128)x, (&8)y, (O-8)2 was used giving a We have a described a method which decouples the 3D 
quasi-2D mesh of ((&128)x, (&8) v). The modified charge Poisson equation into a set of 2D elliptical PDEs, for a 
distribution was varied from 1 x 10p4V to 2 x 10p4V by given set of structures with simple boundary conditions and 
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FIG. 2. 2D and 2D flowcharts. 

steps of 0.125 x 10 -4V, with a uniform distribution in each 
plane. 

The time to process each quasi-2D plane varied between 
0.45 and 0.48 s. This compares to a 2D mesh with identical 
dimensions and a charge distribution of 1 x 10p4V which 
took 0.32 s. The additional 150 ms is accounted for by the 
time taken to move charge data from the 3D array to a 2D 
array and to move potential data from the 2D to the 3D 
array. The time to perform an initial and final Fourier trans- 
form was 2 s, so that the total time to process all the planes 
in serial was approximately 6.5 s. 

Since the individual planes and the initial and final FFTs 
can be processed in parallel (see Fig. 2), even with message 
passing overheads, a reasonable reduction in time should be 
achievable. 
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